

Data Masterclass.

Professor Richard Davies + ECO Data Unit Team

BoE
Thursday 11 July

1.0 Motivation.

Problems, solutions, and plan for today

ha

Where we are.

The state of play

» Analysts will tend to have five steps or more between their raw data and their output.

» Example: a journalist, consultant or academic making a chart of GDP in America

Public-sector Commercial
Data source - Analyst Publisher Output

aggregator aggregator

TXT

BLS FRED Bloomberg Editorial dept Web team

Where we are.

The state of play

» Analysts will tend to have five steps or more between their raw data and their output.

» Example: a journalist, consultant or academic making a chart of GDP in America

Public-sector Commercial
Data source - Analyst Publisher Output

aggregator aggregator

BLS FRED Bloomberg Editorial dept Web team

Note how this system works:
1. Repetition. Many players, each adding delay or cost. Slow and expensive.

Errors. Each link can, and does, break. Each one adds to the chance of a human error.

Compatibility. Many different file types. Delay and compatibility problems

e e

Storage. Huge data storage requirement, with files stored in each silo along the way. Resource and
environmental costs

This system is slow, costly and inaccurate.

Where we are

» Analysts will tend to have five steps or more between their raw data and their output.

» Example: a journalist, consultant or academic making a chart of GDP in America

Public-sector Commercial -
Data source D Publisher Output

aggregator aggregator

BLS FRED Bloomberg Editorial dept Web team

Note how this system works:
1. Repetition. Many players, each adding delay or cost. Slow and expensive.

Errors. Each link can, and does, break. Each one adds to the chance of a human error.

Compatibility. Many different file types. Delay and compatibility problems

p oD

Storage. Huge data storage requirement, with files stored in each silo along the way. Resource and
environmental costs

This system is slow, costly and inaccurate.

Where we are going

 The modern approach used our site uses is different.

» We are building a single secure channel that links an analyst’s output right back to the raw data.

Data source Output
Analyst’s code
>

ONS

Note the differences with the new system:

1. . Your chart is always up to date. When the raw data updates, it flows through the channel
instantly and automatically.

2. . The number of players collapses, as do associated costs. There are no data silos — the data shown
on your site is the raw data, not a copy of them.

3. . A one-to-one link back to the original data provider means fact checks can be swift.

The result is analysis that is faster, cheaper and more accurate.

Why it matters...

...and why Britain's economists should lead the way

The problems above matter in many fields. They are acute in economics and public policy:

Regular updates. Economic data is high-frequency. This means that the ‘repeated analysis’
problem is particularly strong.

Descriptive analysis. Economists and analysts are aiming to clarify. We need our work to be
replicable (someone else can run the code and get the same result) and verifiable.

Normative and policy analysis. Economic data is hard-wired into policy decisions. Getting it
right affects people’s lives.

What we are doing.

Data at the Economics Observatory

To respond to these issues, we have developed the Economics Observatory Data Hub. This contains
three connected tools:

Explore. A new API. This will unify and simplify existing data sources into one stream. The ECO API
offers simple URLs that put the user’s needs first, allowing them to access a wide range of metrics from
multiple international sources

Build. With improved data access comes better analytics. With our new Chart Builder, users take the
latest data directly from source, and display this live in a webpage. No coding skills are needed, but
modern tools are being used in the background: Excel and JPEG are out, JavaScript Object Notation
(JSON), D3.js and Vega-Lite are in.

Share. Robust analysis deserves to be shared. Users can share their visualisations on traditional
platforms like Twitter and Instagram, or can post their work to our new timeline for academics,
journalists, policy-makers and students to post and discuss their charts.

What we are doing.

Data at the Economics Observatory

Explore

Data Explorer

Select country] Select variable]

Your ECO API custom link will appear here 0]

Data Explorer

v Select country J Select variable]
Australia
Bangladesh ere o]

Brazil

Canada
China

DR Congo
Germany

Data Explorer

[Germany]

Your ECO API custom link will appear here

MNaoaa

"author":
"source":
Lty

“data": [

{
"date": y
"value': 1.53661234295201

"date": P,
"value": 2.29369500700881

"date": ,
"value': 2.84327019799063

"date": s
"value": 2.96695977587712

"date":

Exports

GDP

Imports

Inflation

Labour participation rate
Population
Unemployment

Debt

What we are doing

Data at the Economics Observatory

Create

Data Chart Data Code [I.l
[https://api.economicsobservatory.com/deu/infl]

[Country J [Variable J Inflation

CPI, % ISource: Destatis through ECO API

Variables

[date] [Type] [Label X]

value] [Type] [Label Y]
Appearance

Inflation] Size] lou

[CPI, % |Source: D¢ Size] ‘ ; ’

Description

[Tvee | [2 |

[Height]

[Width] Dag)

What we are doing.

Data at the Economics Observatory

Share

ECO

GDP and Life Expectancy
Life expectancy: in years. Source: UN Population Prospects 2022
GDP: per capita PPP (international $). Source: World Bank

Output per worker
GDP: PPP b)

Africa America @ Asia Europe Oceania

80,000 120,000 > 2 240,000
Output per worker (§)

@Finn McEvoy

Today's #ChartOfTheDay visualises the relationship between GDP per capita and life
expectancy.

This chart displays output per worker by country. The top country is Luxembourg,
followed by Ireland, Norway and the United States. The UK only just sneaks into the top
20. The data are from the OECD and the World Bank.

o QO X <&

Masterclass outline.

leaching team + more on ECO

Richard Davies | Director

Charlie Meyrick | Research Fellow
Finn McEvoy | Data Scientist

Josh Hellings | Data Scientist

Hannah Cantekin | Research Assistant

VVebsite: www.economicsobservatory.com
Newsletter: www.economicsobservatory.com/join-us

Data Hub: www.economicsobservatory.com/data-hub

Masterclass outline.

What we are covering today

Time
09.00 - 09.30

09.30 - 10.30
10.30 - 11.00
11:00 - 12.30
12.30 - 13.15
13.15 - 14.15
14.15 - 15.15
15:15 - 15:30

156.30 - 16.30

Section

1

Break

Lunch

Break

Details
Welcome coffee. Checking computer set ups.

Charts as data — introducing Vega-Lite

Coffee/tea (team available to fix bugs)

My first website — GitHub, HMTL, CSS and JavaScript
Lunch (team available to fix bugs)

Programming — APIs, if statements, and loops.
Advanced visualisations — beyond two dimensions
Coffee/tea (team available to fix bugs)

Transforming Data

1.1 Charts as data.

How a new datatype will save you time and errors

JSON data.

JavaScript Object Notation. An important data type. Why use it?

» Itis the way computers share data.
* Most importantly it is what many APIs will deliver — your data will arrive to you in this way.

* It looks complicated at first, but is easy to convert into access, change and chart.

Formatted as key : value pairs:

"{"name" :“David Beckham", “yearBorn":1975, “team":“Manchester United”}’

Keys are strings, always in double quotes.

Values can be many things: string, number, arrays, objects.

Useful tools:
* www.jsonlint.com. Test and format JSON.

« JSON formatter. Chrome extension.

{"query":{"apikey": "b8bb8058-f3d3-11eb-808b-334144del112", "season_id

1137294, "status_code

“"England”, "country.
WBA" , " common_name"
ame": "England",
:null,"ps_score":
137348, "status_cod

"flnlshed","match start": "2020-09-
id"

Season }, group”: {"group_id":103, "group_name" : "Premier
verton
/\/cdn spcr‘tdataapl com\/lmages\/Soccer‘\/teams\/lee\/le png", "country":
West Bromulch
\/cdn. sportdataapi com\/lmages\/soccer\/teams\/1@9\/272 png", "countr
“continent":"Europe"}},"stat: g . :
1208, "name'
"match_start"
352,"stage {"stage_id' H _| ":"Premier

null}, "referee_id":45, "home_team":{"team_id":2546,"name": "Leeds

Lu", "conmon_nare"
"England", "country, code
dn. sportdataapi.com\/im
“England", "country_code

"https:\/\/cdn. sportdataapi.com\/images\/soccer\/teams\/16@\/274.pn
en", "continent": "Europe"}}, "away_team":{"team_id":12429, "name": "Fulham FC","short_code":"FUL","common_name"
s\/soccer\/teams\/100\/6214.png", "country":

i "home_score" :4, "away_score

null,"ps_score":null},"venue": {"venue_id":1225, “name": "ELland Road","capacity":39460, "city"
{"match_id":137387,"status_code":3, "status": "finished", "match_start":"2020-09-19 16:30:00", "match_start_iso

"league_id":237,"

season_id":352, i _id":103, "group_name": “Premier

null} "referee

"Europe"}}," away team” {team id":2515, name
-sportdataapi. co\/images\/soccer\/teams\/160\/9.png" , "country"

”match_start_

o
19T19:00:00+00:00", "minute” :null, league id":237,"season_id":352, "stage":{"stage_id": :"Regular Season"},"group”:{"group_id":103, "group_name": "Premier

The results of request to Sport Data API.

League"}, "round":

League"},"round":

:"Fulham

League"}, "round":

League"}, “round":

Parsed

¥
"away_team": {
"team_id": 2544,
"name": "West Bromwich Albion",
"short_code": "WBA",
"common_name": "",
"logo": "https://cdn.sportdataapi.com/images/soccer/teams/100/272.png",
"country": {
"country_id": 42,
"name": "England",
"country_code": "en",

"continent": "Europe"

}s

"stats": {
"home_score": 5,
"away_score": 2,
"ht_score": "2-1",
"ft_score": "5-2",
"et_score": null,
"ps_score": null

}s

"venue": {
"venue_id": 1208,
"name": "Goodison Park",
"capacity": 39571,
"city": "Liverpool",
"country_id": 42

Why data is great.

Some important aspects of the data revolution

Data is great for a host of reasons:
* Transparency

 Verification

* Replication

 Sharing

« Comparing

Why charts are terrible.

The problem we face

Charts can be terrible for many reasons:
 Opaque
* Repetitious

* Inflexible (pixel problems when changing sizes)

During the break: examples of Chart Junk, and Graph Crimes

The state of play.

Analysis in 2024

. ﬁ Great
.

The big idea for today.

The core philosophy of our course

Charts as JSON data.

@"$schema": "https://vega.github.io/schema/vega-lite/v5.json",

"title": {"text": "Green Party representation - European Parliament"},
"data":{"url": "https://raw.githubusercontent.com/RDeconomist/RDeconomist.github.io/main/data/chartENV19.csVv’
"height": 3ee, Green Party representation — European Parliament
"width": 26, % of seats won by election. Source: European Pariiament
10
"mark": {

'ltype||: l'bar‘||’
"color": I "#86debb"},

"encoding": {

"x": {
"field": "Time",
“"type": "nominal",
"axis": {

"title": null,
"grid": false,
"ticks": false,
"labelAngle": 45}},

SR
"field": "Value",
"type": "quantitative",
"title": "V,

"axis": {"grid": false}}

1.2 Delivering data.

Three ways to inject numbers into your chart

Delivering data.

Where does the data in your chart come from?

A vital input to your chart is the data that is plotted.

We will meet three:
1. Embedding data in your chart code
2. Delivering data from GitHub

3. Delivering data from an API

"$sc

"tit

hema": "https://vega.github.io/schema/vega-lite/v5.json",

le": {"text": "GDP Per Capita"},

"width": 40,
"height": 300,

"data": {
"values": |

“mar

{"Country”: "China","GDP per capita": 21482},
{"Country”: "DR Congo.","GDP per capita": 1337},
{"Country™: "UK","GDP per capita": 54929},
{"Country": "India","GDP per capita": 8400},
{"Country”: "Nigeria","GDP per capita”: 5862},
{"Country”: "USA","GDP per capita”: 76329}]

})

k": {

lltypell: llbar\ll,
"color": "red"},

"encoding": {

X

y

": {"field": "Country"},

ll: {
"field": "GDP per capita",
"type": "quantitative"}}

Delivering data 1.

Embedding the data in your chart

"$schema”: "https://vega.github.io/schema/vega-lite/v5.json",

Delivering data 1.

"title": " .o " i ") ; ;
title®: {"text": "GDP Per Capita"} Embedding the data in your chart

"width": 40,
"height": 300,

"data": {

"values": |

/{"Country": "China","GDP per capita": 21482},

{"Country”: "DR Congo.","GDP per capita": 1337},

{"Country™: "UK","GDP per capita": 54929},

{"Country": "India","GDP per capita": 8400},

{"Country”: "Nigeria","GDP per capita”: 5862},

\{"Country": "USA","GDP per capita": 76329}]
})

N

The dataset can be seen here.

"mark": {
lltypell: llbar\ll,
"color": "red"},

"encoding": {
"x": {"field": "Country"},

llyll : {
"field": "GDP per capita",
"type": "quantitative"}}

"$schema": "https://vega.github.io/schema/vega-lite/v5.json", ® ®
Delivering data 1.

"title": {"text": "GDP Per Capita"} . .
’ Embedding the data in your chart

"width": 400,
"height": 3080,

GDP Per Capita

"data": {

"values":
/{"Country”: "China","GDP per capita": 21482}, \

{"Country”: "DR Congo.","GDP per capita": 1337},
{"Country”: "UK","GDP per capita": 54929},

{"Country”: "India","GDP per capita": 8400}, %
{"Country”: "Nigeria","GDP per capita”: 5862}, g
o
\{"Country": "USA","GDP per capita": 76329} Y, o
0
}s
"mark": {
|ltypell: llbar\lI,
"color": "red"},
"encoding": { §
"x": {"field": "Country"}, -
llyll,

"field": "GDP per capita",
"type": "quantitative"}}

Delivering data 2.

Using GitHub to store and deliver your data

"$schema”: "https://vega.github.io/schema/vega-lite/v5.json",

"title": {
"text":"Real GDP Per Capita"”,
"subtitle": ["Current International USD, PPP", "Source: World Bank"]},

"width": 400,
"height": 3@0,

"data": {"url™: "https://raw.githubusercontent.com/EconomicsObservatory/courses/main/1/example_data/chart2_GDP_pc_6_countries.csv"},

"mark": "line",

"encoding": {
"x": {"field": "Year", "type": "temporal”, "title":null},
"y": {"field": "GDP pc", "type": "quantitative", "title":null},
"color": {"field": "Country Name", "type": "nominal"}

}

Delivering data 2.

Using GitHub to store and deliver your data

"$schema”: "https://vega.github.io/schema/vega-lite/v5.json",

"title": {
"text":"Real GDP Per Capita"”,
"subtitle": ["Current International USD, PPP", "Source: World Bank"]},

"width": 400,
"height": 3@0,

The data are stored
elsewhere on GitHub,
via this link

"data": {"url™: "https://raw.githubusercontent.com/EconomicsObservatory/courses/main/1/example_data/chart2_GDP_pc_6_countries.csv"},

"mark": "line",

"encoding": {
"x": {"field": "Year", "type": "temporal”, "title":null},
"y": {"field": "GDP pc", "type": "quantitative", "title":null},
"color": {"field": "Country Name", "type": "nominal"}

}

Delivering data 2.

Using GitHub to store and deliver your data

"$schema”: "https://vega.github.io/schema/vega-lite/v5.json",
"title": {
"text":"Real GDP Per Capita"”,
subtitle™: Current International USD, PPP", "Source: World Real GDP Per Capita
Current International USD, PPP
"width": 400 Source: World Bank
* 2
"height": 300 Country Name
’ — China
Congo, Dem. Rep
"data": {"url": "https://raw.githubusercontent.com/EconomicsObse *‘ggga
I N
60,000 ~ United Kingdom
"mark": "line" United States
* 2
50,000
"encoding": {
"x": {"field": "Year", "type": "temporal”, "title":null}, 40,000
"y": {"field": "GDP pc", "type": "quantitative", "title":null
" " n - " "] " 11 " - " 30000
color": field": "Country Name", "type": "nominal

20,000

1990 1995 2000 2005 2010

Delivering data 2.

Using GitHub to store and deliver your data

In our spec we have the following:

"data": {"url":
"https://raw.githubusercontent.com
/EconomicsObservatory/courses/main
/1/example data/chart2_GDP_pc 6 co
untries.csv"},

You can open the CSV link in your
browser to see the underlying numbers

Delivering data 2.

Using GitHub to store and deliver your data

In our spec we have the following:

"data": {"url":
"https://raw.githubusercontent.com
/EconomicsObservatory/courses/main
/1/example data/chart2_GDP_pc 6 co
untries.csv"},

You can open the CSV link in your
browser to see the underlying numbers

Country Name,Country Code,Year,GDP pc

United Kingdom,GBR,1990-01-01,17091.3051155726
"Korea, Rep.",KOR,1990-01-01,8355.3327739747
United States,USA,1990-01-01,23888.6000088133
United Kingdom,GBR,1991-01-01,17420.4212113977
"Korea, Rep.",KOR,1991-01-01,9474.64259647045
United States,USA,1991-01-01,24342.2589048189
United Kingdom,GBR,1992-01-01,17840.5510277811
"Korea, Rep.",KOR,1992-01-01,10184.8556645893
United States,USA,1992-01-01,25418.9907763319
United Kingdom,GBR,1993-01-01,18673.348462135
"Korea, Rep.",KOR,1993-01-01,11030.7119484601
United States,USA,1993-01-01,26387.2937338171
United Kingdom,GBR, 1994-01-01,19755.2550837302
"Korea, Rep.",KOR,1994-01-01,12187.2549659273
United States,USA,1994-01-01,27694.853416234
United Kingdom,GBR,1995-01-01,20595.7082090064
"Korea, Rep.",KOR,1995-01-01,13502.5827420794
United States,USA,1995-01-01,28690.8757013347
United Kingdom,GBR, 1996-01-01,21946.108059434
"Korea, Rep.",KOR,1996-01-01,14694.0962445008
United States,USA,1996-01-01,29967.7127181749
United Kingdom,GBR,1997-01-01,23069.3890783783
"Korea, Rep.",KOR,1997-01-01,15721.7056576921
United States,USA,1997-01-01,31459.1389804773
United Kingdom,GBR,1998-01-01,23688.3819751261
"Korea, Rep.",KOR,1998-01-01,14974.6595747118
United States,USA,1998-01-01,32853.6769523009
United Kingdom,GBR,1999-01-01,24493.5013657365
"Korea, Rep.",KOR,1999-01-01,16807.1294764195
United States,USA,1999-01-01,34515.3902272076
United Kingdom,GBR,2000-01-01,26531.5844868141
"Korea, Rep.",KOR,2000-01-01,18538.8355325592
United States,USA, 2000-01-01,36329.9560727102

Delivering data 3.

Receiving data direct from an API

{

"$schema”: "https://vega.github.io/schema/vega-lite/v5.json",

"title": {
"text":"British GDP Growth",
"subtitle": ["QoQ4 % Growth", "Source: ONS via ECO-API"]

}s

"width": 400,
"height": 300,

"data": {"url": "https://api.economicsobservatory.com/gbr/grow?vega"},

"mark": "line",

"encoding": {
"x": {"field": "date", "type": "temporal", "title":null},
"y": {"field": "value", "type": "quantitative", "title":null}

Delivering data 3.

Receiving data direct from an API

{

"$schema"”: "https://vega.github.io/schema/vega-lite/v5.json",

"title": {
"text":"British GDP Growth",
"subtitle": ["QoQ4 % Growth", "Source: ONS via ECO-API"]

) The data comes from

an external source.

"width": 400,

In this case the

Economics
Observatory API.
"mark™: "line", [There are thousands
of APls you can use,
e we w.|II meet more
llxll: {llfieldll: llda.tell’ lltypell: Iltempor\alll, lltitlell:null}’ Iater In the Course]

y": {"field": "value", "type": "quantitative", "title":null}

Delivering data 3.

Receiving data direct from an API

{
"date': '"1956-02", - . . .
APIs (in this context) are just like urls.
"value': 2.6
}
{ You can open the API link in your browser to see
"date": "1956-05", what is being delivered to your machine.
“value': 2.5
i’ Here are the underlying numbers from the current
“date": "1956-08" example
“"value": 0.3
} Note the ‘key-value pairs’
{
“"date": ' ‘ ’
“value": 1.5
}s
{

lldateu: ' - ,» -
“"value": 2.2
}s

1.3 Code along 1.

Playing with Chart specs

https://economicsobservatory.com/modern-data-visualisation

Code-along.

First steps towards JSON visualisations

In this first practical session, we will explore the three data delivery types:
1. Embedded into the design of the chart: “si_charti.json”

2. Via CSV file on GitHub: “s1_chart2.json”

3. Via an API: “s1_chart3.json”

The files can be found here:
http://economicsobservatory.com/modern-data-visualisation

Code-along tool: https://vega.github.io/editor

VEGA-LITE CONFIG
1 { British GDP Growth

QoQ4 % Growth
2 "$schema": "https://vega.github.io/schema/vega-lite/ Source: ONS via ECO-AP

v5.json",

"title": {
"text":"British GDP Growth",
"subtitle": ["QoQ4 % Growth", "Source: ONS via
ECO-API"]

ts

"width": 400,
"height": 300,

"data": {"url": "https://api.economicsobservatory.
com/gbr/grow?vega"},

-15
"mark": "line", -20

n : ", B R I e [S S e e T e e e
encoding”: { 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
"x": {"field": "date", "type": "temporal",

"title":null},

"y": {"field": "value", "type": "quantitative",

Code-along: our tasks

Edit three files to make your first JSON visualisations

File 1. Inline data. (s1_chart1.json)

« Paste the JSON into Vega Lite Editor (https://vega.github.io/editor). Now change:
* The colour of the bars.
« Swap some of the data to countries that interest you
* The size of the chart

File 2. GitHub data. (s1_chart2.json). Changes:

 The colour variable
* The title text
 [The variable being plotted]

File 3. API data. (s1_chart3.json). Changes:

* The API data being delivered.
* The title text
* The line colour

https://economicsobservatory.com/modern-data-visualisation

https://vega.github.io/editor

Code-along: our tasks

Edit three files to make your first JSON visualisations

File 1. Inline data. (s1_chart1.json)
« Paste the JSON into Vega Lite Editor (https://vega.github.io/editor). Now change:
* The colour of the bars.
« Swap some of the data to countries that interest you
* The size of the chart

When happy with your chart:
File 2. GitHub data. (s1_chart2.json). Changes:

 The colour variable
* The title text
 [The variable being plotted]

1. Copy and paste the JSON into your text
editor (Visual Studio Code).

2. Save it locally on your machine.

File 3. API data. (s1_chart3.json). Changes: . sy .
S T AR dlais lscing Sl 3. Add it to your GitHub pages repository.

* The title text
* The line colour

https://economicsobservatory.com/modern-data-visualisation

https://vega.github.io/editor

