

Session 3.
Accessing data programmatically using APIs

The idea.
Control structures | Flow control | Control statements

We want programs/analysis to take decisions for us.

Without control structures (AKA ‘flow control’)
programs don’t do much. What might you want a
program to do for you?

• Stop or start. [Sequence]

• Take a decision on what to do next. [Selection, Conditionality]
• Do different things in different conditions:

• Time of day, or days of the week;
• If data has certain properties: (stock market alert).

• Do something many times. [Iteration, Loops].
• Dynamic programming / maximisation;
• Batches of analysis: downloading, cleaning, charting.

Loops.
STATA | Python | JavaScript

variables = ["debt", "deficit", "GDP", "inflation"]

for i in variables:
 print(i)

APIs.

What is an API?
• Application Programming Interface

• An API is software—an intermediary that helps two applications to talk to each

other.

• They are everywhere: each time you use an app like Facebook or Instagram,

send an instant message, or check your weather app on your phone, you are

using an API (example: Apple Watch)

• APIs are extremely useful to data scientists because they provide a way to

share/access data

https://developer.apple.com/watchos/

API guidance.
• They all look different but have a similar set up.

• A base url: e.g. https://api.stlouisfed.org/fred/series/observations?

• A series of options you can choose: series_id= file_type= time_start=

• Often a request for your API key: api_key=

• Often, when the API requires more information/choices from you, a series of &

symbols. An example:

https://api.stlouisfed.org/fred/series/observations?series_id=UNRATE&api_key=22ee7a76e736e32f54f5

df0a7171538d&file_type=json

https://api.stlouisfed.org/fred/series/observations?series_id=PCEPI&api_key=22ee7a76e736e32f54f5df0a7171538d&file_type=json
https://api.stlouisfed.org/fred/series/observations?series_id=PCEPI&api_key=22ee7a76e736e32f54f5df0a7171538d&file_type=json
https://api.stlouisfed.org/fred/series/observations?series_id=PCEPI&api_key=22ee7a76e736e32f54f5df0a7171538d&file_type=json
https://api.stlouisfed.org/fred/series/observations?series_id=PCEPI&api_key=22ee7a76e736e32f54f5df0a7171538d&file_type=json
https://api.stlouisfed.org/fred/series/observations?series_id=PCEPI&api_key=22ee7a76e736e32f54f5df0a7171538d&file_type=json

ECO API.

• We have made ours as simple as possible.

• https://api.economicsobservatory.com/{COUNTRY}/{SERIES}

• You just need to add the country (e.g. GBR) and the series (e.g. INFL).

• https://api.economicsobservatory.com/GBR/INFL

• To get US growth data all you do is change a few letters:

• https://api.economicsobservatory.com/USA/GROW

https://api.economicsobservatory.com/%7bCOUNTRY%7d/%7bSERIES%7d
https://api.economicsobservatory.com/%7bCOUNTRY%7d/%7bSERIES%7d
https://api.economicsobservatory.com/%7bCOUNTRY%7d/%7bSERIES%7d

Raw JSON.

Download a JSON formatter
plug in for your browser

Worked example.
This chart pulls data from the Economics Observatory API:

Worked example.
Edit the URL to draw data from a different country:

API URL tweaked

Chart now shows
Indonesian data

Session 3.
Accessing data programmatically

Code-along and automated data access

Session 3.
Accessing data programmatically

https://economicsobservatory.com/modern-
data-visualisation

Code-along.
In this third practical session, we will be using Google Colab

1. Quick introduction to loops.

2. Using a loop with an API to create multiple charts.

3. Pick you best chart and embed in your site.

Extra slides: Background.

Background.
The similarity of programming languages

How many languages?
Five?

How many languages?
Three?

Loops.

Loops.
STATA | Python | JavaScript

Loops.
STATA | Python | JavaScript

for i in range (1, 100):
 print i

for i in range (1, 10, 100):
 print i

for i in range (1, 100, 10):
 print i

variables = ["debt", "deficit", "GDP", "inflation"]
for i in variables:
 print(i)

An example of subtle
differences between
languages / functions.

Loops.
STATA | Python | JavaScript

for (statement_1; statement_2; statement_3) {
 // Code block to run
}

What happens here:

• Statement_1 runs once, before the code block starts.

• Statament_2 defines a condition that must hold for the code block to run.

• Statement_3 runs each time the code block has been executed.

Loops.
STATA | Python | JavaScript

for (let i = 1; i < 101; i++) {
console.log(i);

}

for (let i = 1; i < 101; i+10) {
console.log(i);

}

Loops.
STATA | Python | JavaScript

// Set a list of variables:
variables = ["debt", "deficit", "GDP", "inflation"]

// We can index these:
console.log(variables)
console.log(variables[0])
console.log(variables[3])

// Work out how long this thing is:
len = variables.length

// Iterate though it, printing out each particular variable
for (let i=0; i<len; i++) {
 x = variables[i]
 console.log(x)
}

